首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2494篇
  免费   461篇
  国内免费   792篇
测绘学   67篇
大气科学   452篇
地球物理   1046篇
地质学   1236篇
海洋学   506篇
天文学   72篇
综合类   87篇
自然地理   281篇
  2024年   4篇
  2023年   34篇
  2022年   80篇
  2021年   98篇
  2020年   123篇
  2019年   124篇
  2018年   113篇
  2017年   132篇
  2016年   147篇
  2015年   145篇
  2014年   155篇
  2013年   176篇
  2012年   148篇
  2011年   146篇
  2010年   156篇
  2009年   192篇
  2008年   205篇
  2007年   185篇
  2006年   199篇
  2005年   153篇
  2004年   140篇
  2003年   128篇
  2002年   99篇
  2001年   114篇
  2000年   89篇
  1999年   76篇
  1998年   100篇
  1997年   60篇
  1996年   62篇
  1995年   46篇
  1994年   27篇
  1993年   19篇
  1992年   20篇
  1991年   14篇
  1990年   7篇
  1989年   8篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
  1985年   5篇
  1984年   5篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
排序方式: 共有3747条查询结果,搜索用时 93 毫秒
51.
This paper deals with analytical and numerical modelling of the internal stress generated in argillaceous rocks during humidification/desiccation processes, which is an essential issue for damage study. This local stress field arises from two mechanisms: (i) complex interactions between free swelling/shrinking clay matrix and non‐strained inclusions of carbonate and quartz and (ii) a self‐restraint effect induced by the moisture gradient during the transient moisture exchange process. The inclusion–matrix interaction is investigated in different cases. Firstly, the analytical solution of the stress around a cylindrical inclusion embedded in an infinite swelling matrix is derived: The inclusion would suffer tension (compression) under humidification (desiccation), and the resulting cracking patterns are discussed. Then, the problem of two inclusions with different distances in an infinite swelling matrix is considered, and it is shown that the local stress around an inclusion will be perturbed and amplified by neighbouring inclusions. Finally, an inclusion outcropping at the free surface of a swelling matrix is modelled as to investigate the effect of free surface: The inclusion–matrix interface undergoes shear stresses of which the maximum is found at the free surface. In addition to the inclusion–matrix interaction, the self‐restraint effect is investigated: The induced stress is maximal at the beginning of humidification/desiccation processes and vanishes gradually with time. The quantity of the self‐restraint stress is strongly controlled by the hydric loading rate. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
52.
Wave-induced loads on a submerged plate, representative of submerged breakwater, coastal-bridge deck and a certain type of wave energy converter, in a uniform current are investigated in this study using fully nonlinear numerical wave tanks (NWTs) based on potential flow theory. The coupling effect of wave and current is explored, and the underlying interaction mechanisms of the hydrodynamic forces are described. The presence of a background current modifies the frequency dispersion. It produces changes of the water-surface elevation, and also has an effect on wave-induced loads. Depending on the nonlinearity, higher harmonic wave components are generated above the submerged plate. These contribute to the wave forces. It is found that the horizontal and the vertical force, hence the moment, are affected in the opposite way by the currents. The Doppler shifted effect dominates the vertical force and the moment on the plate. Whereas, the Doppler shifted effect and the generation of higher wave harmonics play opposite roles on the horizontal forces. The contribution of 2nd order harmonics is found to be up to 30% of the linear component. The current-induced drag force, represented by the advection term ρU∂φ/∂x in the pressure equation, is found to lead to a decrease in the moment for the most range of wavelengths considered, and an increase in the moment for a small range of longer waves.  相似文献   
53.
ABSTRACT

The Makran complex in southeast Iran provides a spectacular subduction-related accretionary complex to understand the mechanism of oceanic accretion and the evolution of subduction zones. In this paper, we present new major and trace element data as well as isotopic compositions of mafic volcanic blocks from the Makran ophiolitic mélange complex (OMC). Our aim is to assess the genesis of these rocks and discuss their implications on the evolution of Neotethys Ocean. These volcanic blocks are composed mainly of basalts with minor trachytes. The Makran lavas are occasionally interlayered with tuff layers. Zircons from these tuffs give U-Pb ages of 95 Ma, which is well in accordance with the reposted microfossil data for the interlayered pelagic limestones with pillow lavas. Makran basalts can be geochemically subdivided into four groups; normal to transitional MORB, enriched-MORB, Plume-type MORB and alkaline (-OIB-like) basalts. The OIB-like pillow lavas are represented by high values of Th/Tb (6.3–7.4) which are higher than other basalts (group 1 = 0.3–0.8; groups 2 = 0.7–1.6; group 3 = 1.58–1.36).143Nd/144Nd(t) ratios for basalts ranges from 0.51247 to 0.51292, whereas 87Sr/86Sr(t) isotopic composition of the OMC lavas varies from 0.704433 to 0.709466. The Pb isotopic composition of the lavas are quite high, ranging from 15.49–15.66 for 207Pb/204Pb(t), 18.09–19.12 for 206Pb/204Pb(t) and 37.80–39.23 for 208Pb/204Pb(t). The chemistry of these rocks suggests that they were formed most likely in an oceanic setting with clear plume-ridge interaction. These rocks can form from partial melting of a highly heterogeneous mantle source, which is extensively metasomatized with deep mantle OIB-type components. We suggest these rocks have been generated in an oceanic ridge with plume-ridge interaction, similar to the Iceland-Reykjanes Ridge, before being fragmented and accreted into the Makran accretionary complex.  相似文献   
54.
利用断层两盘岩溶水化学特征判断其导隔水性对于我国华北型煤田水害防治具有十分重要的实践意义。以顾北矿F104断层两侧太原组岩溶地下水为研究对象,在分析断层两盘水文地质条件基础上,采用Piper三线图、离子组合比和主成分法,分析了主要组分来源及水-岩作用差异性,并采用PHREEQC软件对岩溶地下水进行反向水化学模拟。结果表明:南北区岩溶水均存在方解石和白云石的溶解和沉淀现象,南区阳离子交换吸附和脱硫酸作用程度强于北区,而北区黄铁矿氧化和岩盐溶解作用较南区明显,南北两区水化学环境及水-岩作用存在显著差异,进而推断F104断层具有较好的阻水性,且影响了其两侧的氧化-还原环境及温度差异,控制着地下水径流方向和水-岩作用程度。   相似文献   
55.
The interactions among surface water, groundwater and seawater are closely related in the coastal area with complex hydrological conditions. A series of impacts from human activities and climate change are also more significant in this region. In order to understand the key knowledge and research status of surface water and groundwater interaction in coastal area, it is a useful method to analyze literatures in this research scope in the core database of Web of Science by using CiteSpace. The research achievements in this field were systematically sorted and potential research hotspots were explored, which may provide references for subsequent researches. The results show the following. The number of highly cited articles and highly burst articles in this research field has increased significantly since 2010. At present, this field is still in the development stage and has a broad research prospect. The United States, Australia, China and Germany have done plenty of researches on this issue and achieved a lot. At present, the number of research achievements supported by National Natural Science Foundation of China is in the lead over the world. Seawater intrusion, submarine groundwater discharge, the relationship between tide and hydrological conditions are the main research direction in this field. Hydrochemistry and isotopic analysis, and numerical simulation are the most important research methods in this field. The potential development directions and breakthroughs in this field include submarine groundwater discharge, the evolution of coastal mangrove wetlands, the migration and transformation of nutrients, the influences of different hydrological factors on coastal areas, and the impact of climate change on coastal areas. Overall, the future development of surface water and groundwater research in coastal areas is inseparable from the cross-integration of various disciplines, mutual verification of multiple methods and the introduction of new technical means.  相似文献   
56.
长江河口潮波传播机制及阈值效应分析   总被引:1,自引:0,他引:1  
河口潮波传播过程受沿程地形(如河宽辐聚、水深变化)及上游径流等诸多因素影响,时空变化复杂。径潮动力非线性相互作用研究有利于揭示河口潮波传播的动力学机制,对河口区水资源高效开发利用具有重要指导意义。本文基于2007—2009年长江河口沿程天生港、江阴、镇江、南京、马鞍山、芜湖的逐日高、低潮位数据及大通站日均流量数据,统计分析不同河段潮波衰减率与余水位坡度随流量的变化特征,结果表明潮波衰减率绝对值与余水位坡度随流量增大并不是单调递增,而是存在一个阈值流量和区域,对应潮波衰减效应的极大值。为揭示这一阈值现象,采用一维水动力解析模型对研究河段的潮波传播过程进行模拟。结果表明,潮波传播的阈值现象主要是由于洪季上游回水作用随流量加强,余水位及水深增大,导致河口辐聚程度减小,而余水位坡度为适应河口形状变化亦有所减小,从而形成相对应的阈值流量和区域。  相似文献   
57.
Many studies have investigated the exchange processes that occur between rivers and groundwater systems and have successfully quantified the water fluxes involved. Specifically, these exchange processes include hyporheic exchange, river–aquifer exchange (groundwater discharge and river loss) and bank storage exchange. Remarkably, there are relatively few examples of field studies where more than one exchange process is quantified, and as a consequence, the relationships between them are not well understood. To compare the relative magnitudes of these common exchange processes, we have collected data from 54 studies that have quantified one or more of these exchange flux types. Each flux value is plotted against river discharge at the time of measurement to allow the different exchange flux types to be compared. We show that there are positive relationships between the magnitude of each exchange flux type and increasing river discharge across the different studies. For every one order of magnitude increase in river discharge, the hyporheic, river–aquifer and bank storage exchange fluxes increase by factors of 2.7, 2.9 and 2.5, respectively. On average, hyporheic exchange fluxes are almost an order of magnitude greater than river–aquifer exchange fluxes, which are, in turn, approximately four times greater than bank storage exchange fluxes for the same river discharge. Unless measurement approaches that can distinguish between different types of exchange flux are used, there is potential for hyporheic exchange fluxes to be misinterpreted as river–aquifer exchange fluxes, with possible implications for water resource management decisions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
58.
This paper presents a novel dynamical model to analyze the long‐term response of a percussive drilling system. This departs from existing approaches that usually consider a single activation and bit/rock interaction cycle for the analysis of the process performance. The proposed model integrates the axial dynamics of an elastic piston and an elastic drill bit, a motion‐dependent pressure law to drive the piston, and a generalized bit/rock interaction law representative of the dynamic indentation taking place at the bit/rock interface. It applies to down‐the‐hole percussive drilling as well as top‐hole, with minor modifications. The model does not account for the angular motion or the hole cleaning, however. The model is first formulated mathematically; then, a finite‐dimensional approximation is proposed for computations. Numerical analyses of the model response, for a low‐size down‐the‐hole percussive system, follow. The period‐1 stationary response for the reference configuration is studied in detail, and parametric analyses assessing the influence on the rate of penetration of the bit/rock interaction parameters, the feed force, and the percussive activation parameters are conducted. These analyses reveal that the multiscale nature of the process is well captured by the model and recover expected trends for the influence of the parameters. They also suggest that a significant increase of the penetration rate can be achieved by increasing the percussive frequency. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
59.
Assuming that the pile variable cross section interacts with the surrounding soil in the same way as the pile toe does with the bearing stratus, the interaction of pile variable cross section with the surrounding soil is represented by a Voigt model, which consists of a spring and a damper connected in parallel, and the spring constant and damper coefficient are derived. Thus, a more rigid pile–soil interaction model is proposed. The surrounding soil layers are modeled as axisymmetric continuum in which its vertical displacements are taken into account and the pile is assumed to be a Rayleigh–Love rod with material damping. Allowing for soil properties and pile defects, the pile–soil system is divided into several layers. By means of Laplace transform, the governing equations of soil layers are solved in frequency domain, and a new relationship linking the impedance functions at the variable‐section interface between the adjacent pile segments is derived using a Heaviside step function, which is called amended impedance function transfer method. On this basis, the impedance function at pile top is derived by amended impedance function transfer method proposed in this paper. Then, the velocity response at pile top can be obtained by means of inverse Fourier transform and convolution theorem. The effects of pile–soil system parameters are studied, and some conclusions are proposed. Then, an engineering example is given to confirm the rationality of the solution proposed in this paper. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
60.
Understanding hydrological processes in wetlands may be complicated by management practices and complex groundwater/surface water interactions. This is especially true for wetlands underlain by permeable geology, such as chalk. In this study, the physically based, distributed model MIKE SHE is used to simulate hydrological processes at the Centre for Ecology and Hydrology River Lambourn Observatory, Boxford, Berkshire, UK. This comprises a 10‐ha lowland, chalk valley bottom, riparian wetland designated for its conservation value and scientific interest. Channel management and a compound geology exert important, but to date not completely understood, influences upon hydrological conditions. Model calibration and validation were based upon comparisons of observed and simulated groundwater heads and channel stages over an equally split 20‐month period. Model results are generally consistent with field observations and include short‐term responses to events as well as longer‐term seasonal trends. An intrinsic difficulty in representing compressible, anisotropic soils limited otherwise excellent performance in some areas. Hydrological processes in the wetland are dominated by the interaction between groundwater and surface water. Channel stage provides head boundaries for broad water levels across the wetland, whilst areas of groundwater upwelling control discrete head elevations. A relic surface drainage network confines flooding extents and routes seepage to the main channels. In‐channel macrophyte growth and its management have an acute effect on water levels and the proportional contribution of groundwater and surface water. The implications of model results for management of conservation species and their associated habitats are discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号